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1. INTRODUCTION

Recent work on the dynamics of wave-particle interaction has led to exten-
sive use of N-body Hamiltonian models in parallel with the more tradi-
tional kinetic approach. The present paper aims at discussing to what
extent the two approaches agree in the limit N-» oo, where N-body
dynamics formally reduces to kinetic theory. This is a classical problem of
statistical physics, which is only partly solved for particles interacting
through short-range forces: significant results in this program are the
derivation of the Boltzmann equation from the Liouville equation in the
Boltzmann-Grad limit in the pioneering work of Lanford and King,
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A system of N particles fN = ( x 1 , v1,..., XN, VN) interacting self-consistently with
one wave Z = Ae\p(i<j>) is considered. Given initial data (Z( N )(0), £^(0)), it
evolves according to Hamiltonian dynamics to ( Z ( N ) ( t ) , E N ( t ) ) . In the limit
N-> oo, this generates a Vlasov-like kinetic equation for the distribution func-
tion f(x, v, t), abbreviated as f ( t ) , coupled to the envelope equation for Z:
initial data (Z(co)(0),/(0)) evolve to (Z ( C O ( t ) , / ( t ) ) . The solution ( Z , f ) exists
and is unique for any initial data with finite energy. Moreover, for any time
7>0, given a sequence of initial data with N particles distributed so that the
particle distribution f N ( 0 ) -»/(0) weakly and with Z(N)(0) -> Z(0) as N-> oo,
the states generated by the Hamiltonian dynamics at all times 0 ̂  t ̂  T are such
that (Z(N)W(t),fN(t)) converges weakly to (Z(co)(t), f(t)).
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limited to short timescales,(1,2) and more recent advances.(3,4) However, for
long-range forces, and more precisely for smooth enough mean-field inter-
actions, the formal limit N-> oo commutes with the dynamics.(5,6) We
show in this paper how the mean-field methods apply also to wave-particle
interactions.

A physical motivation for this work is that wave-particle interacting
systems are typical of plasmas and common to many physical phenomena.
The paradigm of such interactions is provided by the self-consistent
Hamiltonian HN,M describing the evolution of N particles and M
Langmuir waves.(7-20) In particular this Hamiltonian enables a unified
mechanical approach of classical plasma problems like Landau damping
and beam-plasma instability, by treating Langmuir waves as M harmonic
oscillators self-consistently coupled to N quasiresonant beam particles.

More complex Hamiltonians are used in the modeling of laser-plasma
interactions, free electron lasers and beams in traveling wave tubes (see,
e.g., refs. 21-24 and references therein). Such systems are typically
described by the Maxwell equations for the fields, coupled with the Vlasov
equation for the distribution of particles, the motion of individual particles
being computed a posteriori from the obtained evolving fields. As the
modal description of the fields brings the model of the system to a form
similar to the Hamiltonian (1) below, our results may be extended to these
cases, assessing the validity of common practice.

Let us now point out the major motive for this work.
Increasing computing capacities have recently made it possible to

investigate numerically the long-time fate of plasmas, feeding a contro-
versial debate in the kinetic approach, with numerical and theoretical
arguments.(25-27) In those simulations starting from smooth initial data
f(x, v), one commonly observes that complicated distribution functions are
generated, with long thin tendrils in particle (x, u)-space A on scales
eventually smaller than any interparticle distance in the corresponding
N-body description. This phenomenon is well measured by the growth of
a numerical entropy like — \A f In f dx dv or of the entropylike functional
—\A f2dx dv ( 2 7 ) in all kinetic simulations, though these quantities are
invariant for the mathematical solution of the Vlasov equation. This
phenomenon may be connected to the fact that simulations use codes that
necessarily induce a discretized treatment of the phase space. Besides,
physical systems are obviously discrete as they only involve a finite number
of particles. A related process, the formation of (x, v)-space granulations,
has been invoked as an important process in the dynamics of runaway par-
ticles in hot (collisionless) plasmas; these particles' dynamics has been
analyed in a mixed approach, combining kinetic theory and classical
mechanics.(28,29) All this naturally questions the relevance of kinetic results
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and provides a fundamental reason for investigating the compatibility
between the kinetic limit N -> oo and the time evolution of the wave-particle
system.

The basic characteristic of the wave-particle models is that particles do
not interact directly with each other: they only interact with the modes;
symmetrically, the modes do not interact directly with each other: they
only interact directly with the particles. This type of coupling is charac-
teristic of weak turbulence. Inasmuch the modes are spatial Fourier com-
ponents of some fields, these components are not localized spatially: this
invites to describe the many-body limit N -> co as a mean-field limit and
enables us to apply the techniques which succeed in the case of particle-
particle mean-field coupling.

The present work takes advantage of this observation to show that the
kinetic limit N-> oo and the time evolution over any time interval [0, T]
commute. Our result implies (through equations (32), (33) and the
corollary of the theorem below) that numerical simulations with increasing
number of particles behave ever closer to the predictions of kinetic theory,
and that the dynamics of "test particles" in the self-consistent fields con-
verges in a weak sense to the actual dynamics of the particles in the full
many-body system. For simplicity we present our results in one space
dimension with periodic boundary conditions, which conforms to the
physical conditions considered in models of plasmas as implied, e.g., by
spatial confinement. (30-32)

In Section 2 we describe the model and its evolution equations. The
main results are stated in Section 3. Section 4 is devoted mainly to a finite
N estimate and a technical remark, preparing the proof presented in Sec-
tion 5. The final section is devoted to the conclusion.

2. SELF-CONSISTENT HAMILTONIAN AND KINETIC LIMIT

We first consider a general system of N particles with respectively
mass mr, charge qr, position xr and momentum pr, interacting with M
waves with respectively natural frequency u>JO, phase 6j and intensity Ij.
The evolution of this system is described by the Hamiltonian

where the first term corresponds to free particles, the second term to free
waves (harmonic oscillators) and the third term to their coupling. The
coupling constants are expressed in such a way to ease the kinetic limit
N -> oo: we shall keep the "wave susceptibilities" Bj constant in this limit.
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A simple change of variables enables one to ensure that all coefficients
Pj > 0, which is assumed in the following. The overall coupling factor c in
the interaction term of (1) recalls our interest in the weak-coupling regime
(e« 1) (8 ,20) though its smallness is irrelevant in this paper.

Assuming periodic boundary conditions, the particles move on
(R/LZ) = SL and the wavenumbers are quantized (kj = n j2n /L for some
integer nj); the extension to several space dimensions is easy.<33) The phase
space of this system is thus (SL x R)N~x. LM where 2£ = S2n x R+ for each
mode. The self-consistent dynamics generated by Hsc admits two obvious
constants of the motion: total energy E = HSC and total momentum
P = ErPr + ZjkkIj.

The natural scaling of our model in the limit N -> oo is easily deduced
from its equilibrium (Gibbs) thermodynamics. Then the energy E = HSC

and the wave intensities 7, are extensive (i.e., O(N)), and the coupling con-
stant scales as e = O ( N - 1 / 2 ) . The extensivity of wave intensities can easily
be interpreted as, in the physical regime of the model, we expect particles
to be mostly resonant with the waves, each such particle contributing then
to wave intensities by evolving in their potential well. This prompts us to
introduce intensive wave envelopes

and renormalized coupling constants Bj = N1/2£Bj.
To simplify calculations and notations, we introduce other non-

canonical variables, namely particle velocities vr = pr/mr and restrict our-
selves to a single species (all qr = q > 0, mr = m) and only one mode (M = 1,
all indices j will be omitted henceforth), the extension of the forthcoming
results to the general case being straigthforward.(33)

The evolution equations now become

The usual space of kinetic theory is Boltzmann's u-space A = S L x R .
The positions and velocities of the N particles determine a sum of point
measures aN on A:
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with unit total mass irrespective of the number N of particles. The kinetic
limit, formally N-> oo, corresponds to considering a sequence of N-particle
point measures aN converging to a measure a, defined by a positive con-
tinuously differentiable density f(x, v, t) w.r.t. Lebesgue measure in A, in
the weak sense for a natural space of test functions D). Denote by F the
space of positive normalized measures u on A with finite momentum and
kinetic energy, i.e., such that \ d f j , = 1 , \ v2 d/i < I and define on tF the
bounded-Lipshitz distance

with the set of bounded, Lipschitz-continuous normalized test functions

Here A is equipped with the distance | | ( x , v ) — ( x ' , v ' ) | | = o i ( d L ( x , x ' ) +
T|V — V ' | ) , where a-1 and T are respectively convenient length and time
scales to be chosen below and dL stands for the absolute length of the
minimal arc connecting two points on the circle SL, that is dL(x,x') =
minkez | X — X' +kL|.

Then we consider the distance on L,

where the real positive coefficient w will be chosen below in (25), and \a\
is the modulus of the complex number a. Our distance on F x £ is just

Finally, consider a time-dependent pair (ut, a(t)) where ut stands for
an absolutely continuous measure with density f(x, v, t). The kinetic model
dual to (3)-(5) is a system coupling a Vlasov-like equation for f(x, v, t)
with a source equation for a(t):
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This dynamics leaves F x L invariant. For finite JV the point measure (6)
and envelope associated to the particles and mode evolving according to
(3)-(5) form a weak solution of the system (11), (12).

3. MAIN RESULTS

The self-consistent dynamics (3)-(5) preserves two constants of the
motion, namely total energy H and total momentum P = £,. pr + kI. In the
kinetic limit, we consider the normalized constants h = H/N and p = P/N:

where R denotes the real part. For any finite N and h, the energy surface
HN,1 = Nh in AN x £ is compact, and the vector field (3)-(5) is continuous
and bounded on it. This ensures that the dynamics generates a group for
all initial conditions.

Moreover, the first variation of the dynamics (3)-(5) generates a
linear operator M = d(xr, vr, a ) / d ( x r , vr, a), depending continuously on
(xr, vr,a). As the energy surface is compact for any given N, M is
bounded. With the specific form of Hsc, we show that, with appropriate
choice of the constant w:

where

The positive function y[a(s)] is continuous on the energy surface, on which
it has an upper bound uniform with respect to N.

The kinetic limit, N -> co, admits a similar bound, ensuring the exist-
ence and uniqueness
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Theorem. Given initial data (u0, a(0)), (u'0, a'(0)) e,F x L, with
h0 = h(u0, a(0)) and h'0 = h(u'0, a'(0)), the kinetic evolution equations
generate for all times t ^0 states (u, a ( t ) } and (ut, a ' ( t ) ) respectively from
these data. Moreover,

for some C^c 1 +c 2 |h0|1 / 2<co, with C1 and c2 two strictly positive con-
stants independent of initial data.

This theorem implies the

Corollary. Given a continuous measure a^e^F and a sequence of
discrete probability measures &% e F defining the initial distribution of par-
ticles in (x, v) space, such that limN-I db L(aN, a0) = 0, given an initial
wave envelope a(0) e £, and given any time T> 0, consider for all 0 < t < T
the resulting measures and wave envelopes (fN, a N ( t ) ) generated by HN,1

and the kinetic solution (cr, = f(x,v,t)dx d v , a I ( t ) ) of (11), (12). Then
limN- oo dbL(aN, , a,) = 0 and limN-I aN(t) = a°°(t), uniformly on [0, T].

4. PRELIMINARY REMARKS

For given N and finite energy H, the first variation M of the dynamics
(3)-(5) has bounded norm (with the L1 distance):

We readily find

and
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so that

with y [_a(s ) ] defined by (17). The four causes for the divergence of trajec-
tories in A N x L are saddle points (in ( x , v ) plane) associated with maxima
of the modes' potentials (the \a\ contribution to y[a(t)]), velocity shear
(the velocity term), the dependence of the modes source on the particle
positions, and the dependence of the saddle points themselves on the mode
envelopes.

An appropriate choice of constants a, T, w keeps the estimates as small
as possible. Thus let

and solve

This leads to the expression of T announced in (16) and to

so that (24) reduces to

which implies (15). Constant a remains arbitrary, as it only determines the
scale of the distances in A and L, and (15) is homogeneous (degree 1).
Considering only the restricted dynamics on A, with Sa = 0, (24) straight-
forwardly leads to the continuity equation

with
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Note that /[«(/)] is bounded uniformly in time, as the positive function
y[a] is bounded above on the energy surface by a function which does not
grow faster than h1/2 in the large energy limit. More precisely, let A>0
solve l2a>w-1(q[l'k/m)2 = 2 h + a } - 1 ( q B / k ) 2 . Then |B'kaq/m\ ^ (q2/m) w-1 B'2

( l + k 2 L / m ) . It should be noted once more that (29) reflects that the
divergence rate in (x, v) is controlled by velocity shear and by saddle points
of the pendulum-like potential depending on wave amplitudes. The latter
situation typically corresponds to a trapping regime for large enough wave
intensities.

Finally, note the following

Proposition 1. Let Y: A -> A be a Lipschitz mapping with con-
stant L>1 on A, and u, v e F . Then:

5. PROOF OF THE MAIN RESULT

The proof of Theorem 1 uses the fact that the two types of degrees of
freedom have no "self-interaction, which greatly simplifies our Cauchy
problems. Concerning the N-body Cauchy problem consisting in equations
(3)-(5) and given initial conditions in (SL x R)N x L, there exists obviously
a unique solution global in time. The motion of particle r is completely
determined by its initial position and velocity and by the mode history, i.e.,
the data of the envelope a ( . ) over a time interval [s, t] defines the vector
field G so that:

Let us now express the Cauchy problem in terms of measures for any
given initial pair ( u 0 , a(0)). The evolution in the one-particle space A reads
also:

Proof. Clearly L-1 Y e D for any < t > e D . Hence sup^es \\A L-1

Y d ( n - v ) \ < d b L ( n , v ) .
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Assuming the existence of a solution ( n t , a ( t ) ) weakly continuous w.r.t.
time, then this vector field is continuous w.r.t. time, as, by construction,
a(t) is then well defined and even derivable. It is Lipschitz-continuous on
A according to (29) and subsequent remarks. Thus Cauchy-Lipschitz
theorem ensures the existence and unicity of the flow T:

By duality the point measure us on A is transported by the flow to

Similarly, the evolution of the mode is also completely determined by
its initial data a(s) and by the history of the measure on one-particle space
A which defines a flow S by

Solving kinetic equations with initial data ( u 0 , a(0)) amounts then to
finding in the space ( F x L ) R a fixed point of the coupled system (35),
(36) that expresses in terms of measures equations (11), (12). Our strategy
now follows and extends in some way that of Neunzert(5) and Spohn,(6)

who considered direct particle-particle interaction of mean-field type.
We shall first prove the uniqueness of the (hypothetic) solution

starting from given initial data, then establish the existence of a weakly
continuous ( u t , a ( t ) ) , solution to system (35), (36) by showing that it
defines a contractive map for a suitable metric.

Uniqueness. Thus consider ( u t , a ( t ) ) and (vt, b(t)), any two solu-
tions of (35), (36). Here their existence is assumed and their distance at
time t satisfies

In order to minimize the majoration of this discrepancy and provide a con-
tinuity relation versus initial conditions, we apply the triangular inequality
to both terms of the right hand side and emphasize the parallel treatmenl
of both particle and mode evolutions. This gives
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with

Considering the evolution of the wave-particles system in F x L
requires estimating the distances d i ( t ) . The sum d1(t) + d3(t) represents the
distance between the states obtained from different initial conditions
evolving under the same constraints (forces and wave sources). The sum
d2(t) + d4(t) represents on the contrary the distance between two solutions
at time t starting from the same initial conditions but evolving in different
environments. We will first estimate one by one the distances d i ( t ) .

Straightforward integration of (12) shows that

because the flow S[u.] is just a translation in LM.
To estimate d2 we integrate (12) with the right hand sides given by u

and v.:

In (47) the inequality uses the fact that x(l +cos(kx — T ) ) / k e D and
a(l + sin(kx- 0 ) ) / k e D for any real 9, provided that 2a.^k.

Concerning d3, a direct calculation shows that Tt, 0[a(.)] is Lipschitz-
continuous with respect to ( x , v ) with constant exp §'Q y'[a(s)] ds so that
Proposition 1 implies
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Finally, using the definition of D and applying triangular inequality
gives

with

Definition (32) shows that

so that

We now return to our symmetrical treatment of the particles and mode and
define D1(t), a majorant of the sum d ( t ) + d3(t), and D2(t), a majorant of
the sum d2(t) + d4(t), as
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Then previous inequalities for the di ensure that

which Gronwall's inequality readily bounds by

The resulting complete estimate

depends on two functons y'[a(s)] and D1(s). Note that D1(0) =
| | ( H o , a ( 0 ) ) - ( v 0 , b ( 0 ) ) | | and D2(0) = 0. This ensures that estimate (60)
does not grow faster than exponentially, with upper bound on its growth
rate

which is bounded by a function of h0 as discussed in Section 4. This proves
that if a measure solution of the coupled system (35), (36) with given initial
data in (F x L) exists then it is unique.

Remark. Our estimate for the growth rate C in the kinetic case is
larger than the finite-N estimate for |M| in phase space. This is due to the
fact that the distance dbL makes no distinction between x-components and
D-components, while estimates of Section 4 relied on treating these com-
ponents of the phase space points separately to obtain (24).

Existence. Now it is sufficient to prove that (35), (36) admits a
weakly continuous solution ( u . , a ( . ) ) in any arbitrary time interval [0, T].

In the space Cf of weakly continuous time-dependent measures in F,
define, for any real n > 0, the distance dn as

Similarly, in the space Cs of continuous functions on £ define the distance
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( C F , d n ) x ( C r , | | . | | n ) is complete, since ( F , d b L ) and (L, | | . | |) are com-
plete metric spaces.

Consider now the iteration scheme

with u ( 0 ) = y u 0 , a(t)(0) = a ( 0 ) and a given normalized energy h0 =
h ( n 0 , a ( 0 ) ) .

For any te [0, T] and n> 1,

where the first contribution is given by (41) and (47) and the second
contribution follows from (43), (49), (51), (55) and Gronwall's inequality.
A simple calculation then leads to

provided that n is chosen larger than a constant C(h0) of the form given in
(61). Moreover for a suitable choice of n the iterative mapping can clearly
be made contractive, so that the fixed point theorem applies ensuring the
convergence of the scheme (64), (65) towards a unique fixed point in
( C f , d n ) x ( C f , | |. ||n).

This completes the proof of the theorem. The corollary follows in a
straightforward way, by noting that for any sequence ( a N , a N ( t ) ) and
kinetic solution (a,, a°°(t)) we can apply the result (18) for a constant C
bounded by a function of h(a0, aco(0)). As majorations are performed on
a bounded time interval the uniform convergence follows trivially.

6. CONCLUSION

This work supports theoretically the use of full N-body dynamical
schemes(10,l4,20,34,35) to study the wave-particle interactions, as an alter-
native to kinetic-theory based models. This is particularly important for
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questions relating to the nature of irreversible evolution in finite-dimen-
sional hamiltonian systems vs their kinetic counterpart which have con-
tinuous spectra. (9,13,20) However the regularity of the limit N-> oo is tem-
pered by the rapid growth of the right hand side in the upper bound (18).

Conversely, note also that, in classical treatments of wave-plasma
interactions, after obtaining the wave and plasma evolution using the
kinetic approach self-consistently, one uses the resulting field evolution to
compute the motion of particles neglecting any feedback by the latter on
the fields (see, e.g., ref. 22). However the status of the "test" particles in
these treatments is ambiguous at this stage (because their coupling with the
fields is not self-consistent), so that a unified treatment of "test" particles
and "kinetically-distributed" particles is desirable: the present results ensure
the consistency of these classical approaches.

Our results are readily extended to the case of many waves and several
particle species in several space dimensions.(33)

Finally, this work also identifies the fundamental cause of phase space
mixing and approach to equilibrium in this many-body system: particles
passing near the instantaneous saddle points associated with the modes
undergo exponential dichotomy, with a divergence rate controlled by
amplitudes |Zj| = |aj|. This implies that the phase space regions where dis-
crepancies between the kinetic description and the finite-TV description
show up most rapidly correspond to the neighbourhood of the "sepa-
ratrices" associated with the envelopes in the particles" u-space A, as was
observed in numerical simulations for M= 1 by Guyomarc'h.(35)
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